Package ‘qs’

February 22, 2022

Type Package

Title Quick Serialization of R Objects

Version 0.25.3

Date 2022-2-20

Maintainer Travers Ching <traversc@gmail.com>
Description Provides functions for quickly writing and reading any R object to and from disk.
License GPL-3

LazyData true

Biarch true

Depends R (>=3.0.2)

SystemRequirements C++11

Imports Rcpp, RApiSerialize, stringfish (>= 0.15.1)
LinkingTo Rcpp, RApiSerialize, stringfish
Encoding UTF-8

RoxygenNote 7.1.2

Suggests knitr, rmarkdown, testthat, dplyr, data.table
VignetteBuilder knitr

Copyright This package includes code from the 'zstd' library owned by
Facebook, Inc. and created by Yann Collet; the '1z4' library
created and owned by Yann Collet; xxHash library created and
owned by Yann Collet; and code derived from the 'Blosc' library
created and owned by Francesc Alted.

URL https://github.com/traversc/qgs

BugReports https://github.com/traversc/qs/issues
NeedsCompilation yes

Author Travers Ching [aut, cre, cph],
Yann Collet [ctb, cph] (Yann Collet is the author of the bundled zstd,
1z4 and xxHash code),
Facebook, Inc. [cph] (Facebook is the copyright holder of the bundled

1

https://github.com/traversc/qs
https://github.com/traversc/qs/issues

2 R topics documented:

zstd code),

Reichardt Tino [ctb, cph] (Contributor/copyright holder of zstd bundled
code),

Skibinski Przemyslaw [ctb, cph] (Contributor/copyright holder of zstd
bundled code),

Mori Yuta [ctb, cph] (Contributor/copyright holder of zstd bundled
code),

Romain Francois [ctb, cph] (Derived example/tutorials for ALTREP
structures),

Francesc Alted [ctb, cph] (Shuffling routines derived from Blosc
library),

Bryce Chamberlain [ctb] (qsavem and qload functions),

Salim Briiggemann [ctb] (<https://orcid.org/0000-0002-5329-5987>,
documentation)

Repository CRAN
Date/Publication 2022-02-22 08:40:02 UTC

R topics documented:

base85_decode e e 3
base85_encode e 3
base91_decode e e e 4
base9l_encode e 4
blosc_shuffle_raw e 5
blosc_unshuffle raw 6
CAQUO .+ v v v e e e e e e e e e e e e e e e 6
decode_SOUICE o o s 7
eNcOde_SOUICE v v i i e it e e e e e e e e e e e e e e e e e e 7
is_big_endian 8
1z4_compress_bound 9
1z4_compress_raw e e e e e e 9
174_decompress_raw e e e e e e e e 10
geache e 10
qgdeserialize L e e e 12
qdump 12
gread e e 13
greadm . . .o 14
gread_fd L L e e 15
gread_handle 16
gread_ptr e e e e e 17
SAVE . v i e e e e e e e e e e e e e e 17
QSAVEIMN .+ o v v v vt e 19
gsave_fd L 20
gsave_handle L 22
gserialize e 23
SEATNAMES . . . vt v v v e e e e e e e e e e e e e e e e e e 25

zstd_compress_bound Lo 26

https://orcid.org/0000-0002-5329-5987

base85_decode 3

ZStA_COMPIESS_TAW . . . o o v v e e e e e i e e e e e e e e e e e e 26
ZStd_decompress_raw e e e e e e e e e 27
Index 28
base85_decode 785 Decoding
Description

Decodes a Z85 encoded string back to binary

Usage

base85_decode (encoded_string)

Arguments

encoded_string A string.

Value

The original raw vector.

base85_encode Z85 Encoding

Description

Encodes binary data (a raw vector) as ASCII text using Z85 encoding format.

Usage

base85_encode(rawdata)

Arguments

rawdata A raw vector.

Details

785 is a binary to ASCII encoding format created by Pieter Hintjens in 2010 and is part of the
ZeroMQ RFC. The encoding has a dictionary using 85 out of 94 printable ASCII characters. There
are other base 85 encoding schemes, including Ascii85, which is popularized and used by Adobe.
785 is distinguished by its choice of dictionary, which is suitable for easier inclusion into source
code for many programming languages. The dictionary excludes all quote marks and other control
characters, and requires no special treatment in R and most other languages. Note: although the
official specification restricts input length to multiples of four bytes, the implementation here works
with any input length. The overhead (extra bytes used relative to binary) is 25%. In comparison,
base 64 encoding has an overhead of 33.33%.

https://rfc.zeromq.org/spec/32/

Value

A string representation of the raw vector.

References

https://rfc.zeromq.org/spec/32/

base91_encode

base91_decode basE91 Decoding

Description

Decodes a basE91 encoded string back to binary

Usage

base91_decode(encoded_string)

Arguments

encoded_string A string.

Value

The original raw vector.

base91_encode basE91 Encoding

Description

Encodes binary data (a raw vector) as ASCII text using basE91 encoding format.

Usage

base91_encode(rawdata, quote_character = "\"")
Arguments

rawdata A raw vector.

quote_character

The character to use in the encoding, replacing the double quote character. Must
be either a single quote ("' "), a double quote ("\"") or a dash ("-").

http://base91.sourceforge.net/

blosc_shuffle_raw 5

Details

basE91 (capital E for stylization) is a binary to ASCII encoding format created by Joachim Henke
in 2005. The overhead (extra bytes used relative to binary) is 22.97% on average. In comparison,
base 64 encoding has an overhead of 33.33%. The original encoding uses a dictionary of 91 out of
94 printable ASCII characters excluding - (dash), \ (backslash) and ' (single quote). The original
encoding does include double quote characters, which are less than ideal for strings in R. Therefore,
you can use the quote_character parameter to substitute dash or single quote.

Value

A string representation of the raw vector.

References

http://base91.sourceforge.net/

blosc_shuffle_raw Shuffle a raw vector

Description

Shuffles a raw vector using BLOSC shuffle routines.

Usage

blosc_shuffle_raw(x, bytesofsize)

Arguments

X A raw vector.

bytesofsize Either 4 or 8.

Value

The shuffled vector

Examples

X <- serialize(1L:1000L, NULL)
xshuf <- blosc_shuffle_raw(x, 4)
xunshuf <- blosc_unshuffle_raw(xshuf, 4)

catquo

blosc_unshuffle_raw Un-shuffle a raw vector

Description

Un-shuffles a raw vector using BLOSC un-shuffle routines.

Usage

blosc_unshuffle_raw(x, bytesofsize)

Arguments

X A raw vector.

bytesofsize Either 4 or 8.

Value

The unshuffled vector.

Examples

X <- serialize(1L:1000L, NULL)
xshuf <- blosc_shuffle_raw(x, 4)
xunshuf <- blosc_unshuffle_raw(xshuf, 4)

catquo catquo

Description

Prints a string with single quotes on a new line.

Usage

catquo(...)

Arguments

Arguments passed on to cat().

decode_source 7

decode_source Decode a compressed string

Description
A helper function for encoding and compressing a file or string to ASCII using base91_encode()
and gserialize() with the highest compression level.

Usage

decode_source(string)

Arguments

string A string to decode.

Value

The original (decoded) object.

See Also

encode_source() for more details.

encode_source Encode and compress a file or string

Description

A helper function for encoding and compressing a file or string to ASCII using base91_encode ()
and gserialize() with the highest compression level.

Usage

encode_source(x = NULL, file = NULL, width = 120)

Arguments
X The object to encode (if file is not NULL)
file The file to encode (if x is not NULL)
width The output will be broken up into individual strings, with width being the

longest allowable string.

8 is_big_endian

Details

The encode_source() and decode_source() functions are useful for storing small amounts of
data or text inline to a .R or .Rmd file.

Value

A character vector in base91 representing the compressed original file or object.

Examples

set.seed(1); data <- sample(500)

result <- encode_source(data)

Note: the result string is not guaranteed to be consistent between gs or zstd versions
but will always properly decode regardless

print(result)

result <- decode_source(result) # [1] 1 2 3 4 5 6 7 8 910

is_big_endian System Endianness

Description

Tests system endianness. Intel and AMD based systems are little endian, and so this function will
likely return FALSE. The gs package is not capable of transferring data between systems of different
endianness. This should not matter for the large majority of use cases.

Usage

is_big_endian()

Value

TRUE if big endian, FALSE if little endian.

Examples

is_big_endian() # returns FALSE on Intel/AMD systems

1z4_compress_bound 9

1z4_compress_bound 1z4 compress bound

Description
Exports the compress bound function from the 1z4 library. Returns the maximum compressed size
of an object of length size.

Usage

1z4_compress_bound(size)

Arguments

size An integer size.

Value

Maximum compressed size.

Examples

1z4_compress_bound(100000)
#' 1z4_compress_bound(1e9)

1z4_compress_raw Iz4 compression

Description

Compresses to a raw vector using the 1z4 algorithm. Exports the main 1z4 compression function.

Usage

1z4_compress_raw(x, compress_level)

Arguments

X The object to serialize.

compress_level The compression level used. A number > 1 (higher is less compressed).

Value

The compressed data as a raw vector.

10 gcache

Examples

X <- 1:1e6

xserialized <- serialize(x, connection=NULL)

xcompressed <- 1z4_compress_raw(xserialized, compress_level = 1)
xrecovered <- unserialize(lz4_decompress_raw(xcompressed))

1z4_decompress_raw 1z4 decompression

Description

Decompresses an 1z4 compressed raw vector.

Usage

1z4_decompress_raw(x)

Arguments

X A raw vector.

Value

The de-serialized object.

Examples

x <= 1:1e6

xserialized <- serialize(x, connection=NULL)

xcompressed <- 1z4_compress_raw(xserialized, compress_level = 1)
xrecovered <- unserialize(lz4_decompress_raw(xcompressed))

gcache gcache

Description

Helper function for caching objects for long running tasks

gcache 11

Usage
gcache(
expr,
name,
envir = parent.frame(),
cache_dir = ".cache”,

clear = FALSE,
prompt = TRUE,
gsave_params = list(),
gread_params = list()

)

Arguments
expr The expression to evaluate.
name The cached expression name (see details).
envir The environment to evaluate expr in.
cache_dir The directory to store cached files in.
clear Set to TRUE to clear the cache (see details).
prompt Whether to prompt before clearing.

gsave_params Parameters passed on to gsave.

gread_params Parameters passed on to qread.

Details

This is a (very) simple helper function to cache results of long running calculations. There are other
packages specializing in caching data that are more feature complete.

The evaluated expression is saved with gsave () in <cache_dir>/<name>.qs. If the file already exists
instead, the expression is not evaluated and the cached result is read using qread() and returned.

To clear a cached result, you can manually delete the associated . gs file, or you can call qcache()
with clear = TRUE. If prompt is also TRUE a prompt will be given asking you to confirm deletion.
If name is not specified, all cached results in cache_dir will be removed.

Examples

cache_dir <- tempdir()
a<-1
b <-5
not cached
result <- qcache({a + b},
name="aplusb”,
cache_dir = cache_dir,
gsave_params = list(preset="fast"))

cached

12 qdump

result <- qcache({a + b},
name="aplusb”,
cache_dir = cache_dir,
gsave_params = list(preset="fast"))

clear cached result
gcache(name="aplusb"”, clear=TRUE, prompt=FALSE, cache_dir = cache_dir)

gdeserialize qdeserialize

Description

Reads an object from a raw vector.

Usage
gdeserialize(x, use_alt_rep=FALSE, strict=FALSE)

Arguments

X A raw vector.

use_alt_rep Use ALTREP when reading in string data (default FALSE). On R versions prior
to 3.5.0, this parameter does nothing.

strict Whether to throw an error or just report a warning (default: FALSE, i.e. report
warning).

Details

See gserialize() for additional details and examples.

Value

The de-serialized object.

gdump qdump

Description
Exports the uncompressed binary serialization to a list of raw vectors. For testing purposes and
exploratory purposes mainly.

Usage
gdump(file)

gread 13

Arguments

file A file name/path.

Value

The uncompressed serialization.

Examples

x <- data.frame(int = sample(le3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$*IAU Name", 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()

gsave(x, myfile)

x2 <- qdump(myfile)

gread gread

Description

Reads an object in a file serialized to disk.

Usage

gread(file, use_alt_rep=FALSE, strict=FALSE, nthreads=1)

Arguments

file The file name/path.

use_alt_rep Use ALTREP when reading in string data (default FALSE). On R versions prior
to 3.5.0, this parameter does nothing.

strict Whether to throw an error or just report a warning (default: FALSE, i.e. report
warning).
nthreads Number of threads to use. Default 1.
Value

The de-serialized object.

14 greadm

Examples

x <- data.frame(int = sample(le3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$*IAU Name*, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()

gsave(x, myfile)

x2 <- gread(myfile)

identical(x, x2) # returns true

gs support multithreading
gsave(x, myfile, nthreads=2)
x2 <- qread(myfile, nthreads=2)
identical(x, x2) # returns true

Other examples

z <- 1:1e7

myfile <- tempfile()

gsave(z, myfile)

z2 <- gread(myfile)
identical(z, z2) # returns true

w <- as.list(rnorm(1e6))

myfile <- tempfile()

gsave(w, myfile)

w2 <- gread(myfile)
identical(w, w2) # returns true

greadm qload

Description

Reads an object in a file serialized to disk using gsavem().

Usage
greadm(file, env = parent.frame(), ...)
gload(file, env = parent.frame(), ...)
Arguments
file The file name/path.
env The environment where the data should be loaded.

additional arguments will be passed to qread.

qread_fd 15

Details

This function extends qread to replicate the functionality of base: :1oad() to load multiple saved
objects into your workspace. gload and greadm are alias of the same function.

Value

Nothing is explicitly returned, but the function will load the saved objects into the workspace.

Examples

x1 <- data.frame(int = sample(le3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$*IAU Name", 1e3, replace=TRUE),
stringsAsFactors = FALSE)

x2 <- data.frame(int = sample(le3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$*IAU Name*, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()

gsavem(x1, x2, file=myfile)

rm(x1, x2)

gload(myfile)

exists('x1') && exists('x2') # returns true

gs support multithreading

gsavem(x1, x2, file=myfile, nthreads=2)
rm(x1, x2)

gload(myfile, nthreads=2)

exists('x1') && exists('x2') # returns true

gread_fd qread_fd

Description

Reads an object from a file descriptor.

Usage

gread_fd(fd, use_alt_rep=FALSE, strict=FALSE)

Arguments

fd A file descriptor.

use_alt_rep Use ALTREP when reading in string data (default FALSE). On R versions prior
to 3.5.0, this parameter does nothing.

strict Whether to throw an error or just report a warning (default: FALSE, i.e. report
warning).

16 gread_handle

Details

See gsave_fd() for additional details and examples.

Value

The de-serialized object.

gread_handle qread_handle

Description

Reads an object from a windows handle.

Usage

gread_handle(handle, use_alt_rep=FALSE, strict=FALSE)

Arguments

handle A windows handle external pointer.

use_alt_rep Use ALTREP when reading in string data (default FALSE). On R versions prior
to 3.5.0, this parameter does nothing.

strict Whether to throw an error or just report a warning (default: FALSE, i.e. report
warning).

Details

See gsave_handle() for additional details and examples.

Value

The de-serialized object.

qread_ptr 17

gread_ptr qread_ptr

Description

Reads an object from an external pointer.

Usage

gread_ptr(pointer, length, use_alt_rep=FALSE, strict=FALSE)

Arguments
pointer An external pointer to memory.
length The length of the object in memory.

use_alt_rep Use ALTREP when reading in string data (default FALSE). On R versions prior
to 3.5.0, this parameter does nothing.

strict Whether to throw an error or just report a warning (default: FALSE, i.e. report
warning).

Value

The de-serialized object.

gsave gsave

Description

Saves (serializes) an object to disk.

Usage

gsave(x, file,
preset = "high”, algorithm = "zstd"”, compress_level = 4L,
shuffle_control = 15L, check_hash=TRUE, nthreads = 1)

Arguments
X The object to serialize.
file The file name/path.
preset One of "fast”, "balanced”, "high" (default), "archive”, "uncompressed”

or "custom”. See section Presets for details.

18 gsave

algorithm Ignored unless preset = "custom”. Compression algorithm used: "1z4", "zstd",
"1z4hc", "zstd_stream” or "uncompressed”.
compress_level Ignored unless preset = "custom”. The compression level used.
For 1z4, this number must be > 1 (higher is less compressed).
For zstd, a number between -50 to 22 (higher is more compressed). Due to the
format of gs, there is very little benefit to compression levels > 5 or so.
shuffle_control
Ignored unless preset = "custom”. An integer setting the use of byte shuffle

compression. A value between @ and 15 (default 15). See section Byte shuffling
for details.

check_hash Default TRUE, compute a hash which can be used to verify file integrity during
serialization.
nthreads Number of threads to use. Default 1.
Details

This function serializes and compresses R objects using block compression with the option of byte
shuffling.

Value

The total number of bytes written to the file (returned invisibly).

Presets

There are lots of possible parameters. To simplify usage, there are four main presets that are per-
formant over a large variety of data:

e "fast” is a shortcut for algorithm="1z4", compress_level = 100 and shuffle_control
=0.

* "balanced” is a shortcut for algorithm = "1z4", compress_level = 1 and shuffle_control
=15.

* "high" is a shortcut for algorithm = "zstd", compress_level = 4 and shuffle_control =
15.

e "archive" is a shortcut for algorithm = "zstd_stream”, compress_level = 14 and shuffle_control
=15. (zstd_stream is currently single-threaded only)

To gain more control over compression level and byte shuffling, set preset = "custom”, in which
case the individual parameters algorithm, compress_level and shuffle_control are actually
regarded.

Byte shuffling

The parameter shuffle_control defines which numerical R object types are subject to byte shuf-
fling. Generally speaking, the more ordered/sequential an object is (e.g., 1:1e7), the larger the
potential benefit of byte shuffling. It is not uncommon to improve compression ratio or compres-
sion speed by several orders of magnitude. The more random an object is (e.g., rnorm(1e7)), the
less potential benefit there is, even negative benefit is possible. Integer vectors almost always benefit

gsavem

19

from byte shuffling, whereas the results for numeric vectors are mixed. To control block shuffling,
add +1 to the parameter for logical vectors, +2 for integer vectors, +4 for numeric vectors and/or +8
for complex vectors.

Examples

x <- data.frame(int = sample(le3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$*IAU Name", 1e3, replace=TRUE),

stringsAsFactors = FALSE)

myfile <- tempfile()

gsave(x, myfile)

x2 <- qread(myfile)
identical(x, x2) # returns true

gs support multithreading
gsave(x, myfile, nthreads=2)
x2 <- gread(myfile, nthreads=2)
identical(x, x2) # returns true

Other examples

z <- 1:1e7

myfile <- tempfile()

gsave(z, myfile)

z2 <- qread(myfile)
identical(z, z2) # returns true

w <- as.list(rnorm(1e6))

myfile <- tempfile()

gsave(w, myfile)

w2 <- gread(myfile)
identical(w, w2) # returns true

gsavem

gsavem

Description

Saves (serializes) multiple objects to disk.

Usage

gsavem(...)

Arguments

Objects to serialize. Named arguments will be passed to gsave () during saving.

Un-named arguments will be saved. A named file argument is required.

20 gsave_fd

Details

This function extends gsave() to replicate the functionality of base::save() to save multiple
objects. Read them back with gqload().

Examples

x1 <- data.frame(int = sample(le3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$*IAU Name", 1e3, replace=TRUE),
stringsAsFactors = FALSE)

x2 <- data.frame(int = sample(le3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$*IAU Name*, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()

gsavem(x1, x2, file=myfile)

rm(x1, x2)

gload(myfile)

exists('x1') && exists('x2') # returns true

gs support multithreading

gsavem(x1, x2, file=myfile, nthreads=2)
rm(x1, x2)

gload(myfile, nthreads=2)

exists('x1') && exists('x2') # returns true

gsave_fd gsave_fd

Description

Saves an object to a file descriptor.

Usage

gsave_fd(x, fd,
preset = "high”, algorithm = "zstd", compress_level = 4L,
shuffle_control = 15L, check_hash=TRUE)

Arguments
X The object to serialize.
fd A file descriptor.
preset One of "fast”, "balanced”, "high" (default), "archive”, "uncompressed”
or "custom”. See section Presets for details.
algorithm Ignored unless preset = "custom”. Compression algorithm used: "1z4", "zstd",

"1z4hc", "zstd_stream” or "uncompressed”.

gsave_fd 21

compress_level Ignored unless preset = "custom”. The compression level used.
For 1z4, this number must be > 1 (higher is less compressed).

For zstd, a number between -50 to 22 (higher is more compressed). Due to the
format of gs, there is very little benefit to compression levels > 5 or so.
shuffle_control

Ignored unless preset = "custom”. An integer setting the use of byte shuffle
compression. A value between @ and 15 (default 15). See section Byte shuffling
for details.

check_hash Default TRUE, compute a hash which can be used to verify file integrity during
serialization.

Details

This function serializes and compresses R objects using block compression with the option of byte
shuffling.

Value

The total number of bytes written to the file (returned invisibly).

Presets

There are lots of possible parameters. To simplify usage, there are four main presets that are per-
formant over a large variety of data:

e "fast" is a shortcut for algorithm="1z4", compress_level = 100 and shuffle_control

=0.

¢ "balanced" is a shortcut for algorithm = "1z4", compress_level = 1 and shuffle_control
=15.

e "high" is a shortcut for algorithm = "zstd", compress_level = 4 and shuffle_control =
15.

e "archive" is a shortcut for algorithm = "zstd_stream”, compress_level = 14 and shuffle_control
= 15. (zstd_streamis currently single-threaded only)

To gain more control over compression level and byte shuffling, set preset = "custom”, in which
case the individual parameters algorithm, compress_level and shuffle_control are actually
regarded.

Byte shuffling

The parameter shuffle_control defines which numerical R object types are subject to byte shuf-
fling. Generally speaking, the more ordered/sequential an object is (e.g., 1:1e7), the larger the
potential benefit of byte shuffling. It is not uncommon to improve compression ratio or compres-
sion speed by several orders of magnitude. The more random an object is (e.g., rnorm(1e7)), the
less potential benefit there is, even negative benefit is possible. Integer vectors almost always benefit
from byte shuffling, whereas the results for numeric vectors are mixed. To control block shuffling,
add +1 to the parameter for logical vectors, +2 for integer vectors, +4 for numeric vectors and/or +8
for complex vectors.

22 gsave_handle

gsave_handle gsave_handle

Description

Saves an object to a windows handle.

Usage

gsave_handle(x, handle,
preset = "high”, algorithm = "zstd"”, compress_level = 4L,
shuffle_control = 15L, check_hash=TRUE)

Arguments
X The object to serialize.
handle A windows handle external pointer.
preset One of "fast”, "balanced”, "high" (default), "archive"”, "uncompressed”
or "custom”. See section Presets for details.
algorithm Ignored unless preset = "custom”. Compression algorithm used: "1z4", "zstd",

"1z4hc", "zstd_stream” or "uncompressed”.

compress_level Ignored unless preset = "custom”. The compression level used.
For 1z4, this number must be > 1 (higher is less compressed).

For zstd, a number between -50 to 22 (higher is more compressed). Due to the
format of gs, there is very little benefit to compression levels > 5 or so.

shuffle_control
Ignored unless preset = "custom”. An integer setting the use of byte shuffle
compression. A value between @ and 15 (default 15). See section Byte shuffling
for details.

check_hash Default TRUE, compute a hash which can be used to verify file integrity during
serialization.
Details
This function serializes and compresses R objects using block compression with the option of byte
shuffling.
Value

The total number of bytes written to the file (returned invisibly).

gserialize 23

Presets

There are lots of possible parameters. To simplify usage, there are four main presets that are per-
formant over a large variety of data:

e "fast” is a shortcut for algorithm="1z4", compress_level = 100 and shuffle_control
=0.

¢ "pbalanced” is a shortcut for algorithm = "1z4", compress_level = 1 and shuffle_control
=15.

e "high" is a shortcut for algorithm = "zstd", compress_level = 4 and shuffle_control =
15.

e "archive" is a shortcut for algorithm = "zstd_stream”, compress_level = 14 and shuffle_control
=15. (zstd_stream is currently single-threaded only)

To gain more control over compression level and byte shuffling, set preset = "custom”, in which
case the individual parameters algorithm, compress_level and shuffle_control are actually
regarded.

Byte shuffling

The parameter shuffle_control defines which numerical R object types are subject to byte shuf-
fling. Generally speaking, the more ordered/sequential an object is (e.g., 1:1e7), the larger the
potential benefit of byte shuffling. It is not uncommon to improve compression ratio or compres-
sion speed by several orders of magnitude. The more random an object is (e.g., rnorm(1e7)), the
less potential benefit there is, even negative benefit is possible. Integer vectors almost always benefit
from byte shuffling, whereas the results for numeric vectors are mixed. To control block shuffling,
add +1 to the parameter for logical vectors, +2 for integer vectors, +4 for numeric vectors and/or +8
for complex vectors.

gserialize gserialize

Description

Saves an object to a raw vector.

Usage
gserialize(x, preset = "high",
algorithm = "zstd”, compress_level = 4L,

shuffle_control = 15L, check_hash=TRUE)

24 gserialize

Arguments
X The object to serialize.
preset One of "fast”, "balanced”, "high" (default), "archive”, "uncompressed”
or "custom”. See section Presets for details.
algorithm Ignored unless preset = "custom”. Compression algorithm used: "1z4", "zstd",

"1z4hc", "zstd_stream” or "uncompressed”.

compress_level Ignored unless preset = "custom”. The compression level used.
For 1z4, this number must be > 1 (higher is less compressed).

For zstd, a number between -50 to 22 (higher is more compressed). Due to the
format of gs, there is very little benefit to compression levels > 5 or so.

shuffle_control
Ignored unless preset = "custom”. An integer setting the use of byte shuffle
compression. A value between @ and 15 (default 15). See section Byte shuffling
for details.

check_hash Default TRUE, compute a hash which can be used to verify file integrity during
serialization.

Details

This function serializes and compresses R objects using block compression with the option of byte
shuffling.

Value

A raw vector.

Presets

There are lots of possible parameters. To simplify usage, there are four main presets that are per-
formant over a large variety of data:

e "fast” is a shortcut for algorithm="1z4", compress_level = 100 and shuffle_control
=0.

e "balanced” is a shortcut for algorithm = "1z4", compress_level = 1 and shuffle_control
=15.

e "high" is a shortcut for algorithm = "zstd"”, compress_level = 4 and shuffle_control =
15.

e "archive" is a shortcut for algorithm = "zstd_stream”, compress_level = 14 and shuffle_control
=15. (zstd_stream is currently single-threaded only)

To gain more control over compression level and byte shuffling, set preset = "custom”, in which
case the individual parameters algorithm, compress_level and shuffle_control are actually
regarded.

starnames 25

Byte shuffling

The parameter shuffle_control defines which numerical R object types are subject to byte shuf-
fling. Generally speaking, the more ordered/sequential an object is (e.g., 1:1e7), the larger the
potential benefit of byte shuffling. It is not uncommon to improve compression ratio or compres-
sion speed by several orders of magnitude. The more random an object is (e.g., rnorm(1e7)), the
less potential benefit there is, even negative benefit is possible. Integer vectors almost always benefit
from byte shuffling, whereas the results for numeric vectors are mixed. To control block shuffling,
add +1 to the parameter for logical vectors, +2 for integer vectors, +4 for numeric vectors and/or +8
for complex vectors.

starnames Official list of IAU Star Names

Description

Data from the International Astronomical Union. An official list of the 336 internationally recog-
nized named stars, updated as of June 1, 2018.

Usage

data(starnames)

Format

A data. frame with official IAU star names and several properties, such as coordinates.

Source

Naming Stars | International Astronomical Union.

References

E Mamajek et. al. (2018), WG Triennial Report (2015-2018) - Star Names, Reports on Astronomy,
22 Mar 2018.

Examples

data(starnames)

https://www.iau.org/public/themes/naming_stars/

26 zstd_compress_raw

zstd_compress_bound Zstd compress bound

Description
Exports the compress bound function from the zstd library. Returns the maximum compressed size
of an object of length size.

Usage

zstd_compress_bound(size)

Arguments

size An integer size

Value

maximum compressed size

Examples

zstd_compress_bound(100000)
zstd_compress_bound(1e9)

zstd_compress_raw Zstd compression

Description

Compresses to a raw vector using the zstd algorithm. Exports the main zstd compression function.

Usage

zstd_compress_raw(x, compress_level)

Arguments

X The object to serialize.

compress_level The compression level used (default 4). A number between -50 to 22 (higher
is more compressed). Due to the format of gs, there is very little benefit to
compression levels > 5 or so.

Value

The compressed data as a raw vector.

zstd_decompress_raw

Examples

x <- 1:1e6

xserialized <- serialize(x, connection=NULL)

xcompressed <- zstd_compress_raw(xserialized, compress_level = 1)
xrecovered <- unserialize(zstd_decompress_raw(xcompressed))

27

zstd_decompress_raw Zstd decompression

Description

Decompresses a zstd compressed raw vector.

Usage

zstd_decompress_raw(x)

Arguments

X A raw vector.

Value

The de-serialized object.

Examples

x <- 1:1e6

xserialized <- serialize(x, connection=NULL)

xcompressed <- zstd_compress_raw(xserialized, compress_level = 1)
xrecovered <- unserialize(zstd_decompress_raw(xcompressed))

Index

x datasets
starnames, 25

base85_decode, 3
base85_encode, 3
base91_decode, 4
base91_encode, 4
base91_encode(), 7
base::load(), 15

base: :save(), 20
blosc_shuffle_raw, 5
blosc_unshuffle_raw, 6

cat(), 6
catquo, 6

decode_source, 7
decode_source(), 8

encode_source, 7
encode_source(), 7, 8

is_big_endian, 8

1z4_compress_bound, 9
1z4_compress_raw, 9
1z4_decompress_raw, 10

gcache, 10
gcache(), 11
gdeserialize, 12
gdump, 12

gload (greadm), 14
gload(), 20
gread, 13
gread(), 11
gread_fd, 15
gread_handle, 16
gread_ptr, 17
greadm, 14
gsave, 17

28

gsave(), 11, 19, 20
gsave_fd, 20
gsave_fd(), 16
gsave_handle, 22
gsave_handle(), 16
gsavem, 19
gsavem(), 14
gserialize, 23
gserialize(), 7,12

starnames, 25

zstd_compress_bound, 26
zstd_compress_raw, 26
zstd_decompress_raw, 27

	base85_decode
	base85_encode
	base91_decode
	base91_encode
	blosc_shuffle_raw
	blosc_unshuffle_raw
	catquo
	decode_source
	encode_source
	is_big_endian
	lz4_compress_bound
	lz4_compress_raw
	lz4_decompress_raw
	qcache
	qdeserialize
	qdump
	qread
	qreadm
	qread_fd
	qread_handle
	qread_ptr
	qsave
	qsavem
	qsave_fd
	qsave_handle
	qserialize
	starnames
	zstd_compress_bound
	zstd_compress_raw
	zstd_decompress_raw
	Index

