itdr: Integral Transformation Methods for SDR in Regression

The routine, itdr(), which allows to estimate the sufficient dimension reduction subspaces, i.e., central mean subspace or central subspace in regression, using Fourier transformation proposed by Zhu and Zeng (2006) <doi:10.1198/016214506000000140>, convolution transformation proposed by Zeng and Zhu (2010) <doi:10.1016/j.jmva.2009.08.004> and iterative Hessian transformation methods proposed by Cook and Li (2002) <doi:10.1214/aos/1021379861>. The function fm_xire() function provides optimal estimators by optimizing a discrepancy function using a Fourier transform approach proposed by Weng and Yin (2022) <doi:10.5705/ss.202020.0312>. The admmft() function selects the sufficient variables using a Fourier transform sparse inverse regression estimators proposed by Weng (2022) <doi:10.1016/j.csda.2021.107380>.

Version: 2.0.0
Depends: R (≥ 3.5.0)
Imports: stats, utils, MASS, geigen, magic, energy, tidyr
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2023-06-23
Author: Tharindu P. De Alwis ORCID iD [aut, cre], S. Yaser Samadi ORCID iD [ctb, aut], Jiaying Weng ORCID iD [ctb, aut]
Maintainer: Tharindu P. De Alwis <talwis at>
License: GPL-2 | GPL-3
NeedsCompilation: yes
Citation: itdr citation info
Materials: NEWS
CRAN checks: itdr results


Reference manual: itdr.pdf
Vignettes: itdr-vignette


Package source: itdr_2.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): itdr_2.0.0.tgz, r-oldrel (arm64): itdr_2.0.0.tgz, r-release (x86_64): itdr_2.0.0.tgz
Old sources: itdr archive


Please use the canonical form to link to this page.